If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+17x-32=0
a = 4; b = 17; c = -32;
Δ = b2-4ac
Δ = 172-4·4·(-32)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-3\sqrt{89}}{2*4}=\frac{-17-3\sqrt{89}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+3\sqrt{89}}{2*4}=\frac{-17+3\sqrt{89}}{8} $
| 3x=2.5x+24 | | x+4*3=10 | | -4k+1=17 | | 2x/(x-0.5)=7.36 | | 23-3n=8 | | 5xX8=243 | | 2x/(x-0.5)=54.3 | | 6x-102=2x-14 | | 2g^2+7g+6=0 | | 3x^2-17x=24 | | 2x=20x+8 | | 5/8t+14=11 | | 5/6g=6/5 | | 2g^2+7g=6=0 | | -10a-5=75 | | 4/x=8/(x-3) | | x+34=14x-44 | | 6x=14x-48 | | 18.84=2*3.14*r | | (10x6)+2=62 | | (10x6)+2=60 | | 34/5-y=-51/10 | | 21/10+y=19/5 | | 25x-1=124 | | (3x+20)=(7x-40) | | 3/(x+2)=5/2x | | 4m-8=10-12 | | F(x)=9x-81 | | xx−+65=0 | | 5g-2(7+4g)=-5 | | 1/5x-7=1/4x+3 | | 1100=2q+q |